EXTENDER-BASED MAGIDOR-RADIN FORCINGS WITHOUT
TOP EXTENDERS

MOTI GITIK AND SITTINON JIRATTIKANSAKUL

ABsSTRACT. Continuing [1], we develop a version of Extender-based Magidor-
Radin forcing where there are no extenders on the top ordinal. As an applica-
tion, we provide another approach to obtain a failure of SCH on a club subset
of an inaccessible cardinal, and a model where the cardinal arithmetic behav-
iors are different on stationary classes, whose union is the club, is provided.
The cardinals and the cofinalities outside the clubs are not affected by the
forcings.

1. INTRODUCTION

The present work continues [1] and develops Extender-based Magidor-Radin fore-
ings without top extenders. The main new issue here is to deal with Cohen parts
of Extenders Based forcings. New ideas involving a substantial use of names will
be applied for this.

As an application, we give new proofs of results of [2], where the power set
function behaves differently on stationary classes. An advantage of the present
approach is that fewer cardinals and cofinalities are affected by the forcing.

The organization of the paper is the following. In Section 2 we introduce all
basic ingredients we need to develop the forcing. From Section 3 to Section 8, we
develop the forcing in which a club class of cardinals « with 2% = ot +. The forcing
for building a club class of cardinals is built from approximated forcings, which will
be built by recursion. The basic cases are constructed in Section 3. In Section 4 we
state all the properties we need to be true, and show that the forcings in the basic
cases satisfy the properties. Then the construction proceeds in Section 5, Section
6, and Section 7. The main forcing will then be introduced in 8. Lastly, in Section
9, we sketch a generalization of the forcing to get different cardinal behaviors on
different stationary classes.

Although the version of Extender-based forcing and the Extender-based Magidor-
Radin forcing we will be using looks different from [3], A familiarity of the Extender-
Based Magidor-Radin forcings will accommodate the readers.

Conventions: Without mentioning, we assume that every forcing has the weakest
element 1. p < ¢ means p is stronger than gq. When possible, every name in this
paper will be in the canonical form. Most of the time, we omit the check symbol
when we discuss the check names. For sets A and B, AU B just means AU B where
ANB =10. If f is a function and d is a set, define f | d as f | [dNdom(f)]. If f and
g are functions, f o g is a function whose domain is {z € dom(g) | g(z) € dom(f)}
and f o g(z) = f(g(x)). Throughout the paper, the forcing at level p, denoted P,
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will be defined. We often abbreviate <p, by <, and I-p, by IF,. If ¥ = (24,) is a
sequence indexed by pairs of ordinals, we define
T (a,B) = (2o p | <aor (o =aand B < pj)),

and
Zla=2[(a,0).

2. BASIC PREPARATION
From now until Section 8, we have the following hypotheses.

Assumption 2.1. GCH holds. k is a strongly inaccessible cardinal. There is a
function o : k — K and E = (E(a, B) | a < &, 8 < o(x)) such that

(1) E(a,B) is an (a,atT)-extender, which means that if
Ja,p 1V = U(V, E(a, B)) =: Mag

is the ultrapower map, then crit(jo,z) = o, and M, g computes cardinals
correctly up to an including o7 .
(2) E is coherent, namely

Jap(E) 1 (a+1)=E | (a,B).
(8) for all o, o(a) < av.
(4) For every v < k, the collection
{a <k |o(a) 27}
15 stationary.

Definition 2.2. Let a < k. We say that d is a a-domain if d € [a*F \ o|>% and
a € d. Define C(at,a™™) as the collection of functions f such that dom(f) is a
a-domain d, and rng(f) C a. Define the ordering in C(at,a™) by f < giff f D g.

Note that C(a™,a™") is isomorphic to Add(a™,at™), the forcing which adds
a™ Cohen subsets of at.

Remark 2.3. If |P| < a and C(at,att) is a P-name of the forcing interpreted in
the extension, then

kp “{f € Clat,a™) | dom(f) =d,d € V} is dense”.

We identify such and f by f with dom(f) = d, and for a € dom(f), f(a) is a
P-name of an ordinal below a.

Until the end of this section, fix a with o(a)) > 0 and 8 < o(«). We introduce
some definitions and facts which will be used since Section 7. Fix an a-domain d.

e Define meq,s(d) = {(ja,2(€),€) | € € d}.
e Define E, g(d) by X € E, g(d) iff mc, g(d) € ja,3(X). Then E, g(d) con-
centrates on the collection OB, g(d) of (a, §)-d-objects, which are functions
1 such that
— «a € dom(p) C d,rng(p) C « (in fact, we can assume that rng(p) C
p(@) ™).
(The reason is that dom(mca g(d)) = ja,sld] C ja,s(d), jasla) €
Jaosld], g(mea,s(d) = d € @+ = mea(d)(ap(a)) )
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— o(u(@)) = B, in particular, u(a) is strongly inaccessible, | dom(u)| <
pu(a)™T, and pu is order-preserving.
(The reason is that j, 5(o)(a)Me# = B, avis inaccessible, | dom(mcq, 5(d))| =
|d| < atT, and mc, g is order-preserving.)
o Let X, € E, g(d) for v < a. Define the diagonal intersection

AycaX, = {1 € OBas(d) | Yv < p(a)(p € X,)}.

Then A, <o X, € Eq 5(d).

e The measure E, g({a}) is normal, and is isomorphic to E, g(«), which is
defined by X € E, g(a) iff a € jqo g(X).

o if d D dis an a-domain, there is an associated projection from E, g(d’)
to Eq g(d) induced by the map g q : OBy g(d’) — OB g(d) defined by
maa(pe) =p [ d (ie pl (dNdom(p)). In particular, there is a projection
from E, 5(d) to Ey g({a}).

e Similar as in the proof of Lemma 2 [4], there is a measure-one set By €
E, 3(d) such that for every v < a, {u € OB, g(d) | pla) = v} <vtF. We
will assume that for every A € E, g(d), A C By.

We now no longer fix 3, but still fix « and d.

e 1 is an a-d-object if u is an («, B)-d-object for some 3 < o(a). Denote the
collection of a-d-object by OB, (d). For each pair of a-d-objects p and T,
define p < 7 if dom(u) C dom(7) and for v € dom(u), u(vy) < 7(7).

e Define X € E,(d) iff X can be written as X = Ug<o(a)Xp wWhere X €
Ea (d). Note that for each a-d-object u, {T € OB, (d) | p < 7} € En(d).

e Note that for each a-d-object 7, {u | 7 < u} € E4(d).

e For each X € Ea(d), X can be written as a disjoin union of Xz, 8 < a,
where Xg € E, g(d) and for each p € Xz, o(u(a)) = 8.

e Let X, € E,(d) for v < a. The diagonal intersection

ApcaXy ={pn € OBu(d) | Vv < p(a)(p € Xu)}

is in E,(d).

o If u < 7, we define u | 7 = po 77!, which is the function whose domain
is 7[dom(p)] and for v € dom(u), (1 4 7)(7(v)) = p(y). Since 7 is order-
preserving, we have that u | 7 is well-defined.

e If X is a set of a-d-object and 7 € OB,(d), define X | 7 = {p | 7|
u < 1,0(u(a)) < o(r(a))}. By the coherence of the extenders, we also
assume that every X € Ea(d) is coherent, i.e. for every 7 € X, X | 7 €
Er (o) (7]d N dom(7))).

e Let i = (po, - ,n—1) be an increasing sequence of a-d-objects, define
fi(a) = pp—1(a), which is just an inaccessible cardinal below «. Also
write dom(Z) = dom(up—1). Also, if pu,—1 < 7, we define @ | 7 = {(uo J
Ty s Hn—1 \l/T>

e A is an a-d-tree if A consists of nonempty finite increasing sequences of
a-d-objects, and A has the following descriptions:

— i<, 7iff fC 7 (fis an initial segment of 7).

— Lev,(A) is the collection of {(ug,- -, un,) in A, so they have lengths
n+ 1.

— We require that Levo(A) € E4(d).
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— For ji € A, define Succa(ii) = {7 | i~(r) € A}. We require that
Succa () € Eq(d).

e If Ais an a-d-tree and p € Levg(A), define A,y = {7 | (u) "7 € A}, and
we recursively define A, .. iy = (Aguoe un_1)) (un)-

e Fix d C d an a-domain and @ = (uo, - ,pn—1) is a finite increasing
sequence of a-d-objects, define i [ d' = (uo [ dy-++ ,pon—1 [ d'). If we
assume that A is an a-d-tree, define A [ d' ={i [ d | i€ A}. Then A | d’
is an a-d’-tree.

e If d D d is an a-domain, and A is an a-d-tree, the pullback of A to d’, is
{fi € [OB4(d)]<¥ | fi is increasing and [i | d € A}. Note that the pullback
is an a-d’-tree.

e Atree Ais generated by B € Eo(d) if Levo(A) = B, and for i = (uo, -+ , pin—1) €
A, Succa(fi) = {7 € B | pip—1 < 7}. Such a tree is an a-d-tree. Further-
more, every a-d-tree A has a sub a-d-tree which is generated by some B €
E.(d): for each v < a, let X, = Nger (o)< Succa(fi), and B = A, X,,.
We assume that every d-tree A is generated by some B C By.

o We write A(a) = {ji(a) | ii € A}. If A is generated by B, then A(a) =
B(a) = {u(a) | p € B},

e If A is an a-d-tree and 7 is an object, define A | 7 = {{ | 7 | Vi(u; <
7 and o (u;(a)) < o(r(a)))}. By the coherence, assume that for each 7,
A | 7is an 7(«)-7[d N dom(7)]-tree, with respects to ET(Q) (r[d Ndom(T)]).

Remark 2.4. For every d-tree A and v < «, we assume that {f € A | fi(a) =
f7]—1 (@) = v} has size at most v+,

3. THE FIRST FEW LEVELS

We consider the forcings at the first w inaccessible cardinals, so, the extenders are
not involved. We first analyze just for the first few inaccessible cardinals concretely,
which will be served as the first few basic cases for our induction scheme for the
forcings in the general levels, which will be listed later in Proposition 4.1.

3.1. The first inaccessible cardinal. Let oy be the least inaccessible cardinal.
The following describe the scenario at the level .
e The forcing P,, consists of (f) where f € C(ag,ad™). For (f),{g) € Pa,,
define (f) <q, (9) iff f <3, giff f2 4.
e Let C,, be a P, ,-name for the set {ap}.
o Let P, /q, be a Py ,-name of the trivial forcing ({0}, <, <*). We write
Pao [G] = POCU(OCO [G]
o In VP, let C,,
The forcing at the first inaccessible cardinal has nothing particularly interest-
ing. The name C,, will be served as the initial approximation of the final club
where GCH fails at its limit points. The quotient forcing like P,

o/ao be a Pao/ao—name of the empty set.

o/ao Will show its

importance later. C'ao /oo Will also be considered for an approximation of the final
club. It will be more suggestive to write Pdo /oo Since in general, the ordinal which
appears for the numerator, like ¢y, may be a non-trivial name of an ordinal. Since
this is a check name, we omit the check symbol. A trivial remark is that forcing
P,, * Pao Jao 18 equivalent to Py, .
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3.2. The second inaccessible cardinal. Let ay < «y be the first two inaccessible
cardinals.

Definition 3.1. The forcing P,, cousists of two kinds of conditions (apart from
the weakest condition). Conditions of different kinds are not compatible.

(1) The first kind consists of (f) in C(aj,a; ™). For (f) and (g) which are of
first kind, define (f) <a, (9) iff (f) <&, (g) iff f 2 g.
(2) The second kind consists of p = ({fo), <P5'/a0v Go)) " (f1), where
e fo€Claf,af™).
o Iy, “<ap < § < a7 is strongly inaccessible” (in this case, we can
assume that f is g, or more formally, dp).
o lFoy “Go € Pé/ao” (we can assume gy = ().
e dom(f1) is an ag-domain, and for v € dom(f1), f1(7) is a Py, * Pg'/ao'
name, II—PaO*]b&/a0 “fr(y) < aq”.
e For such a condition p, define p | P,, = (fo).
From now, we replace £ by ag. We view ((fo), <Pa0/a0,qo>) or ((fo),do) as
a condition in Py, * P, We say that

o/ao*

((fo)s (Pag fag+ G0)) (1) Sar ((90): (Pag/aos 70)) ™ (1) i

({(fo), (Pag/a d0)) ™ (1) <ty ({90), (Pag/ags 0)) ™ (o) iff
fo 2 go,dom(f1) 2 dom(g1), and for v € dom(g1), ({fo), qo) Fp, o
“hi(y) =a()”.
Let Cy, be a P,,-name such that for p of the first kind, p IFo, Cs, = {o1}, and

for p of the second kind, p -y, “Ca, = {0, a1}”. We now define different types of
quotients.

0/a0

o Pa1 Ja, 18 @ Py, -name of the trivial forcing, with the obvious extension and

the obvious direct extension. In VFe1 | let C,, be a P, /o, -name of the
empty set.

e The quotient Pal Jao 18 @ Py,-name of the following forcing notion. Let G be
Py, -generic. The forcing Py, [G] := Py, /0, [G] consists of ((Pa,[G],0)) " (f)
wherelbp g “f € Claf,af ") (Claf, af 7) is considered in (V[G])Feo/ao Gl =
V|[G]), and dom(f) € V Note that () is considered as the condition in P, [G].
The extension and the direct extension are the same and are defined as the
following. We assume that for each F,, of a condition in Pal Jao 18 of the

form po = ((Pag/ag, )" (f). We say that p € P,, interprets po if p decides

1/ 1/

dom(f). The collection of such p is open dense and if p interprets pg, we may

write f where dom(f) is the domain where pg interprets (dom f). Then
we can write po”p1 as (po, (Pao/ao, 0)~(f). For po,p1 which are P, -name
of conditions in Pal/am IFa, “po <piiff Ip € G’pag p interprets py and pi,
and p~pg < p_p1”. Back to the ground model, in Voo, let C'al/ao be the
Pa1 Jao-name for {a1}. The point of having an empty set in the condition
because it is more natural to translate a condition in P,, of the second kind

to a condition in Pal/ao, namely, for each p = ({fo), (Pé/ao,(jO))“(fl) in
P,,, we have that Ik, “((Pao/ao, Q)" (f1) € Pal/ao”. This is because ¢ is
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always interpreted as the empty set in Pao Jao» and f1 is a function whose

range contains names of ordinals in with respect to the correct forcing.

Note that {p € P,, | p is of the second kind} can be densely embedding in

Poy * Pal/oéo

The subforcing of P,, containing conditions of second kinds is nothing but a

two-step iteration of the Cohen forcings, except that the domains can always be
decided by the weakest element to be in the ground model.

in the sense of <.

Definition 3.2. The forcings at level a are the forcings of the form P, or P, /3.

4. THE INDUCTION SCHEME

We are now stating the induction scheme, and point out that it holds for the
basic cases.

Proposition 4.1 (The induction scheme). Let a be an inaccessible cardinal. Here
are the properties for the forcings at level a.
(1) The basic properties of the forcing (Py, <,<*).
e |P,| = atTt.
e (P,,<)isa"-c.c.
o (P,,<,<*) has the Prikry property.
(2) The P,-name of the set C,. Let C, = C,, [G] where G is generic over P,.
e C, Ca+1, max(C,) = a.
e Ifo(a) =0, then Cy N is a bounded subset of c.
o Ifo(a) >0, then Cy Nax is a club subset of a.
e C, contains only inaccessible cardinals of V.
(3) Cardinals and cofinalities in the extension.
e [fo(a) =0, then o remains regular in the extension over P,.
e Ifo(a) > 0, then when we force over P,, « is singularized and cf(a) =
cf(w°®) (the ordinal exponentiation).
e In the extension, for every cardinal f < o, 28 = B+ or 28 = g++, and
28 = BT iff B € lim(C,).
o For each V-reqular 8 < «, B is singularized iff 5 € lim(Cy,).
(4) Pa/a is always a P,-name of the trivial forcing ({0}, <, <*).
(5) The factor Pa/ﬁ for B < a.
o {pe P, |p]l Pz exists} densely embeds into Pg * Pa/g wn the < sense.
o l-g “|Pa/3| =atT, (Pa/g, <) isatt-cc.”.
o k3 “(Pa/ﬁ,g*) is B*-closed”, where f* = min{€ > B | £ is strongly
inaccessible}.
o I3 “(Pa/ﬁ, <,<*) has the Prikry property”.
(6) The quotient set Co/p: Let G be Pg-generic over V. and H be PQ/B[G]-

generic over V[G]. Let Cy /g = Cy/p(G][H].

o If B=a, then Cy 5 = 0.

e Suppose B < «. Then I = G x H is P,-generic, which introduces
the set Co. Also, G introduces the set Cg. Then Co 3 C (B,a], and
Co=0CsU Ca/,@-

(7) Double quotients: Let v < < a and G is Py-generic. Then Pa/,@[G] 18
defined as

IFpyic) “P € PayslGl iff p € PolG + HY”,
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where H is the canonical P3|G]-generic.

We always skip (4) and (7) of Proposition 4.1 since they will follow directly
from the definitions. Showing the induction scheme of the forcings at level the first
inaccessible cardinal is easy. For a non-triviality, we now show that the forcing P,,
as described in Definition 3.1 satisfies the induction scheme.

Proposition 4.2. Let ag < ay be the first two inaccessible cardinals. Then forcings
at level o satisfies the induction scheme.

Proof. (1) e The set of conditions in P,, of the first kind is C(af, o),
whose size is a**. Conditions of the second kind are of the form
((fo): (P¢ /g0 d0)) " (f1). We assume that the names are in their sim-

plest form in the sense that { = dp, Go = 0. The part ({fo), <P§'/aov qo))

is in V,,. Then for each v € dom(f1), fi(7) is a Py, * Pao/ao—name
of an ordinal below «. By replacing fi(y) with its nice name, assume
that f1(y) € V,,. Hence, the number of such fi’s is (af 1)t = of T.
Hence, |P,,| = af ™.

e Suppose that X = {p” | v < af "} is an antichain of conditions in
P,,. By shrinking X, we may assume that X contains conditions of
the same kind. If it contains conditions of the first kind, then the
standard A-system applies. Suppose X contains conditions of the
second kind. By shrinking further, assume there is py such that for
every v, p” = po_(f{). Then we can apply a standard A-system
argument on {f] | v < af "}, and we are done.

e Obvious, since < and <* on P,, are the same.

(2) Note that o(c;) = 0. If G contains conditions of the first kind, then Cy, =
{a1}, and if G contains conditions of the second kind, then C,,, = {ap, a1 }.
In either case, it is a subset of @ +1 whose maximum is ;. Also, Cy, Navy is
either @ or {a} which is bounded in a1, and C,,, contains only inaccessible
cardinals in V.

(3) o(a1) = 0, and the forcing P,, is equivalent to either a Cohen forcing
Add(aj,af ), or a two-step iteration of Cohen forcings Add(ag,af ™) *
Add(af,af ). In both cases, a; remains regular, GCH still holds, and
lim(Cy) = {0}.

(4) Pal/al is a P,,-name of the trivial forcing.

(5) Consider Pal/ao.

e For each p = ((fo), <Pé/a0’ Go)) " {f1), consider the map 7(p
Clearly, this map is a dense embedding from {p € P,, |
Pay * Poy jaq-

e Since P,, forces GCH, a similar argument as in (1) shows that IF4,
“|Pay e | = ai ™, (Pay /o> <) 18 ait-ce.,”

e Let G be P, -generic. Conditions in P,, [G] are of the form ((#))™(f1).
We ignore the empty set’s part. Note that since P,,[G] := .040/010 [G]
is trivial, so f; is just a Cohen condition in V[G]. We now assume
that a condition in P,, [G] is (f1). Let {(f] | v < ¥*) be a decreasing
sequence of conditions, where v* < a1. In V, let d* = U,<1+{d | Ip €
P,,(p decides dom(fy') as d)}. Then d* € V, and let f* be such that
dom(f*) = d*, and in V[G], f* < f] for all 7. Then f* is as required.

(<f0 )

) = ((fo), (@)™ f1))-
pl Patt

(0}
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o Iy, “ <, <* are the same in Pal Jao»> hence has the Prikry property”.

(6) In VFar*Fay/ar Ca, /a, is the empty set. In VFeao*Pay/aq Cai/ao =101} C
(a0, 1], and in this model, Co,—oUCy, /o, = Ca,, since it is the same model
with the extension V=1 using conditions of the second kind.

(7) Trivial since the definition is given.

O

Remark 4.3. (1) Py, = P,ll Jao 18 equivalent to the subforcing P,, containing
conditions of the second kind, and there is a natural translation from one
generic to another. Namely, suppose that G * H is such a generic object.

Define I = {(p07<POéo/aoﬂq>)Apl | Do € GﬂH_Oéo “(<P060/0407(j>)/\p1 € H”}'
Then V[I] = V|G * HJ.

(2) If we force with conditions in P,, of the second kind, we can obtain an
equivalent generic object from P, * Pal Jao Naturally. Namely, if I is Py, -
generic containing conditions of the second kind, let

G = {<f0> | 3q,f1(<f07<Pa9/a0,q.>)f\<fl> S I}a

and

H = {((0)~(A1[G]) | 3fo, d({for (Pagjae: )~ (f1) € I}
Then G is P,,-generic, H is P,, [G]-generic, and V[I] = V[G x H].

5. BELOW THE FIRST MEASURABLE CARDINAL

Let « be a strongly inaccessible cardinal which is below the first o* with o(a*) =
1. We will assume that « is at least the w + 1-th strongly inaccessible cardinal so
that the conditions of arbitrarily length will appear at this stage.

Definition 5.1. P, consists of the conditions of the following kinds:
e The pure conditions, which are conditions of the form (f), where f €
Cla™,a™™).
e The impure conditions, which are conditions of the form

((f0) ™ By jagr d0)) ™~ (1) " (Ps_ ja s dn=1)) (),

for some n > 0, where
— ap < -+ < ap_1 < a are inaccessible.
— for all i, IF,, “a; < BZ < ;41”7 , where a,, = .
- fo € C(aa', ozé“") and for ¢ > 0, dom(f;) = d; is an «;-domain (in the
sense of V), and for ¢ € d;, fi(¢) is a P,,_, * Pﬁiil/aiil—name and

”_P"‘ifl*PB'ifl/'lifl “fZ(C) <ai
In particular,
Nt ATt
Vo epy . “fi€Clat,al).
— dom(f) = dis an a-domain, and for ¢ € d, f(¢)isa P,, _, *Pﬁnfl/anfl'
name and
. «“ 9
”_P%A*Pﬁn,l/an,l f(¢) <a”.



EXTENDER-BASED MAGIDOR-RADIN FORCINGS WITHOUT TOP EXTENDERS 9

In particular,

I+ “f e Clat,at).

Panfl*Panl/anfl
- «“p 5 ”
— for all ¢, Ik, “¢; € PBi/ai .
By recursion, we consider

(<f0>A<P30/a0»qo>)A TS
as a condition in P,,. Denote p | P,, as the condition as bove. We also consider
((f0) ™ (P5y jarg» G0)) ™ - ~((Fi)s (P, o))
as a condition in P, * PB'i/ai' Denote such a condition by p | (i + 1).

The ordering <, and <} will be the same. We only define <,. When we mention
a condition p, we put the superscript p to every component in the condition. If p
is the condition as in the definition, we write n? = n, top(p) = (f).

Definition 5.2. Let
Po = ({f0) " (Phy jarg» 40)) "+ ~(Fam1) Py, jn 1 Gn1) (),

and

—~

P = (90) "~ (Pay o)™~ (gn) (Be i) ).
We say that py <, pp iff
e n=nm.
o fori<n,a; =7 . . .
fo 2 g0, {fo) Fay “Bo = o and o <g_ /o, T0” (We can assume S = o).
o fori>0,d" Dd andfor Ced’  pli b, b, . “Fi(C) =gi()".
o for i >0, (po | i)"(f;) lFa, “B; = & and ¢ <pija; Ti (we can assume
Bi = &)
e dom(f) 2 dom(g) and for ¢ € dom(g),

ol n I 5.
p [ Pa"_l*Panl/C‘nfl

“f(Q) = 9(¢).

We may also assume that fl = ﬂz for all 7. The extension relation does not
increase the length of a condition. For a generic G containing a condition p, define
C,, as the following: If p is pure, then C,, = {a}. Assume p is impure and n = n?.
Then p [ n € P,, * P, . Let B, = |G | Pa,_,]. By Proposition 4.1 (2) and

Bn/an

(6), G | (Pa, * PBn/an) introduces the set C' = Co,_, UCs,_,/a,_, € Bn-1+1

with max(C’) = B,—1. Define C, = C" U {a}. Still, this forcing does not change
the cardinal arithmetic.

We now define P,/ for f < a. A key point is that we need {p € P, | p [ Ps is

defined} to be densely embedded in Pg * P, /8-

Definition 5.3 (The quotient forcing). Let Pa/a be the P,-name of the trivial
forcing ({0}, <, <*). In VP let C'a/a be the Pa/a—name of the empty set. Now
assume that § < a. Define P, /3 as the following. Let G be Pg-generic. Define
P,[G] = P, /3[G] as the forcing consisting of conditions of the form
p=((Pp[Gl,q) ™ ((fo): (Pay 0o (Gl d0)) -~ ({fn1): (Bp,_, ja_, [Gly 1))~ (f)

where n > 0 and
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(1) B < B < a, so Pg|G] was already defined by recursion, which is just
Pg65[G] and B = B'[G]. Furthermore, ¢’ € Py/[G].
(2) If n > 0, then ap < -+ + < a1, and for i < n,
e let d; = dom(f;), then d; is an a;-domain, d; € V.
o for ¢ € do, IFp,| G] “fo(¢) < ao”, and if i > 0, then for ¢ € d;,

[G]=P;, “fz(C) < a;”.

1/a
o IFp. (g ‘i § 61 < Oéi+1”, where «,, = a.
° “_Pai[G] “q; € PBi/ai [G}”.
(3) d:=dom(f) is an a-domain, and is in V.
(4) Fix¢ €d. Ifn =0, thenlFp g “f(¢) < a”, otherwise, Fp, (1P, Jon 4l
n— n—1/0n—1
“FlQ) <a
Back in V. If p is a Pg-name of a condition in P, /3, then by density, there is
po € Pg such that py decides n, ag,- -, ap—1, dom(fo),- - ,dom(f,—1), dom(f).
In this case, we say that py interprets p. All in all, for such py which interprets all
the relevant components of p, let p; be such the interpretation. Write pg as o™ (g)
and by the interpretation, we write

pr=({Baryp )™ (fo) (Psy jag d0)) -~ (1) (Ps, ey dn=1)) ().

There is a natural concatenation pg with p;, written by pyo ™ p1, which is

r=r0"((9), Paryp: i) T (1) (Pp, e yr 1)) " (f)-

Then r € P, with r [ Pg = pg exists. For py and p; in Pa/ﬂ, we say that py < p; if
there is p € G*# such that p interprets py and py, and p~pg <o p_p1. Also define
po <* py if there is p € GP# such that p interprets po and p;, and p~po <X p " p1
(note that at this level <* and < are still the same). One can check that the map
¢ :{p € Po|p| Psexists} = Pg x P, /g defined by ¢(p) = (p | Ps,p\ Pp) is a
dense embedding, where p \ Pg is the obvious component of p which is in P, /8-

In VP let C'a/ﬁ be a Pﬂ/a name of the set described as the following. Let G be
Pg-generic. Write

p = ((Por[GL,d' )" ({fo)s (Psy oo [Glsd0)) -+ ™ ({frm1)s (Ps, .y, [Gls 1)) (f)
as an element in P,[G]. The part which excludes the top part, i.e.

(<Pﬁ'[ ] ) (<f0> <.BO/QO[GLQO>) (<fn 1> < Br1/an— 1[G],qn_1>)

isin P,, ,[G]* P 1 /an_, [G]. Let H be generic over the forcing. By our induction
scheme, H produces Co I_I Cy, where Cy C (8, an—1] (can be empty if n = 0), and
Cy C (an—1,Pn-1] (can be empty if 5,1, the interpretation of Bn,l, is ap_1). If
n > 0, then max(Cy) = ay—1, and if B,-1 > a,—1, then max(Cy) = B,—-1. Let
Ca/B = CQ U Ol U {0&}

a1

Gl

Proposition 5.4. P, and the relevant quotients at « satisfy Proposition 4.1.

Proof. (1) Similar as the proof of the corresponding properties in Propoisition
4.2.
(2) o(a) = 0. Then the forcing P, introduces the set C,, C a+1 where C,, \ {a}
is a bounded subset of . By induction hypothesis, it is easy to see that
C, contains only inaccessible cardinals in V.
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(3) The forcing P, under a certain condition can be factored to Q*C(at, at),
where @ € V,, and hence, « is still regular. Note that since « is below the
first measurable cardinal, we can still induct to show that C, is finite. Since
Q is either empty or a two-step iteration where it forces GCH. Hence, P,
still forces GCH.

(4) Obvious.

(5) Let 8 < a.

e The map p+— (p | P3,p\ P3) is a dense embedding from {p € P, | p |
Py exists} to Pg * Pa/ﬁ.

e Similar to the proof of the corresponding properties in Proposition 4.1,
g “|Pyysl = @t and is a**-c.c.”

o Let B/ < p* and kg “{p” | v < B’} be a <*-decreasing sequence
of conditions in Pa/ﬁ”. We may assume that p? = pJ~(f7). Then
kg “{pg | v < B’} is a <*-decreasing sequence in a certain forcing
P * PB* /a*”. By induction hypothesis, the two-step iteration is 5*-
closed under <*. Let p§ be such that for all v, IFg “p§ <* pJ”. Now a
similar proof as in the corresponding property of Proposition 4.1 can
be used to find f; such that for all v, IFg “p§ ™ (f) <* pg ~{(f1)"-

e Since < and <* on P, /s coincide, the Prikry property holds.

(6) By the construction of C,, /s and the factorization, the property holds.

(7) Obvious by the definition of the double quotient stated in the Proposition
4.1.

O

6. AT THE FIRST a WITH o(a) = 1

We exhibit the forcing at the level of the first cardinal with a positive Mitchell
order. Let « be the first such that o(a) = 1. A variation of the Extender-based
Prikry forcing will be introduced. Instead of diving into a full definition all at once,
we progress through a series of definitions. We make use of the digression we did
in Section 2.

Definition 6.1. A pure condition of P, is p = (fo, f: A, F) where there is a common
domain d such that

(1) Ais a d-tree.

(2) dom(F) = A(«).

(3) for v € dom(F), F(v) = (Pgu/y,q'> where I, “v < 8, < a and ¢ € Pﬂy/y”.

We often represent F(v) as (F'(v)o, F'(v)1).

(4) dom(f) =d and fo € C(at,a™™).

() f=(fv|veA)). .

(6) for each v € A(a), dom(f,) = d and for ¢ € d, f(,(¢) is a P,  P; , -name

and IFPV*PBV/V “fu(Q) < a’.

The forcing looks different from a usual Extender-based forcing. The main dif-
ference is that now we have a sequence of Cohen-like functions. The role of the
sequence of the Cohen-like functions is that we want the closure of the quotient
forcings at this level (and also in general) to be high with respect to the direct
extension relation. If we just use a Cohen function in the ground model, then the
corresponding quotient will no longer be highly closed with respects to the direct
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extension relation. When we perform a one-step extension, we want to somehow
change the Cohen function to a name, where the name of a Cohen function respects
to the forcing in which the lower part lives. The explanation will make a bit more
sense once we introduce the one-step extension operation.

We now discuss a one-step extension of a pure condition. Suppose that p =
(fo. f> A, F) with the common domain d. Let (i) € Levo(A) with u(e) = v. The
one-step extension of p by p is 1 {go, g, A’, F') such that

or = ({(foop '), F(v)). Write F(v) = (P ,,,q) (note that we assume
foou !t € C(vT,vTT) and the collection of such p is large).

o A ={7¢e Ay | To() > *} where g* = sup{y | Ir € P,(r I, “B, =

7)"}-

F' =F | (A(a)).

dom(go) = d.

Fp,p,, 00 = fy @, ie. for ¢ € d, if ¢ € dom(n), go(¢) = p(),
otherwise, |Fpu*p6/u “90(¢) = f,(¢)” (we can assume tat go(¢) = f,(¢) for
¢ € d\ dom(p)).

o §={fv |V € Ala)).

Note that particular, (foopu~!) € P,, and so, r can be considered as a condition

in P, * Pﬁ',,/u' Like in a lot of Pirkry-type forcings, a d-tree at « gives us objects to
create new blocks below a. The part (go, g, A", F') looks similar to a pure condition
except that for each ¢, we now have that each go({) is a name with respects to the
forcing corresponding to where r lives.

We now define a condition in a general form.

Definition 6.2. A condition in P, is either pure or impure, which is of the form

p= (<f0>A<PIB'O/a03 q0>)A o A(<fn—1>A<PBnil/an717Qn—l>)/\<goa gv Aa F>7
for some n > 0, and a common domain d such that
(1) ((f0) (P4 jarg 40)) "+ " {fn-1) € Pa,_,, where a1 < a (by the induc-
tive construction, ap < -+ < Qp—1).
(2) H_Oén—l “anfl S ﬁn*l < a7qn71 € Panl/an—lw'
(3) dis an a-domain (we emphasize that d € V). .
(4) Ais a d-tree, min(A(«)) > B*, where 8* =sup{y | 3Ir € Py, ,(rlF fBp_1 =
)} :
(5) dom(F) = A(a), and for each v € A(w), F(v) = (Py ,,q), where IF, “v <
B,, <aand g€ PBV/V”'
g=Agv |V € A()}.
dom(ggp) = d and for all v/, dom(g, ) = d.
For ( € d, IFp  .p. “g0(¢) < «”, and for all v/, Ik,
Anp—1 Bn—1/0%n—1 v ﬁl,//l//
“gv(¢) < a”.
We write p | Pa = ((f())A(PBO/aO,%))A_'"A(fi>, s0 p | Py, € P,,. Also write
pli= (<f0>A<PBQ/aO’Q'0>)A"'A(<fi>A<PB¢/ai’qZ'>)’ and we consider p [ i as a
condition in P, * PBi s We put the superscript p to every component, including

—~ e~
~N

oo
T

the common domain, i.e. we write d? for d. We call ¢;’s the interleaving part of p.
With p as above, we write top(p) = {go, 7, A, F'), stem(p) = p \ top(p) and say that
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stem(p) has n blocks and write n? = n. From the definition, it is straightforward
to check that |P,| = ™.

Definition 6.3 (The one-step extension). Let

(<f0> < ﬂo/aoaqo>) : (<fn 1> < Br_1/ctn_ 1’qn 1>)A<907§7A5F>7

with its common domain d, and (u) € Levg(A). Say v = u(a). The one-step
extension of p by u, denoted by p + {(u), is the condition

P = ({fo) " (Piy o @0)) " " (1) " (Py, 12 Gn—1)) "0,
where

(1) 7o =(goop~ ', F(v)),
e goo u~ ! has domain rng(u).
o for ¢ € dom(u), (go o p= ") (1(¢)) = g0(C)-
o Wiite F(v) = (P;, /).
(2) r1 = O,h’,A/,F/>7
o A" ={T e Ay | ola) > p*}, where p* = sup{y | Ir € P,(r IF,
“Bu = 7’7)}'
F'=F | A().
h={gv | V' € A'(a)}.
dom(hg) = d, and for all v/, dom(h,/) = d.
Fp wp., “ho =g, ®u”, ie. for ¢ € d, if ¢ € dom(u), ho(¢) = u(bz),

B/v
otherwise, H_PV*P[;/ “ho(¢) = ¢,(¢)” (we may assume that for ¢ €

d \ dom(:u‘)a hO(C) = gu(())
o for v € A'(a), hy = gur

We define p--() as p, and by recursion, define p-+ (g, -+ ,ftn) = (p+ {0, ftn_1))+
(tin)-

Definition 6.4 (The direct extension relation) Let
(<f0> < ﬁo/ao’qo>) . (<fn 1> < [37, 1/0471 1’qn 1>)/\<90’§7A5F>7

and
P = ((ho) ™ (B s 7o) T (1) (P, o Tme1)) " (to G AT F).
We say that p is a direct extension of p’, denoted by p <¥ p', if the following hold.
(1) n=m.
(2) fori<n, a; =;.
B)pIn<*p nin P,,_, *Pﬂ” a1
* fo 2 ho. o
o fori <m,p| Py, kg, “B; = & and ¢ S* 7*1” (we can take 8; = &;).
e fori € (0,n), dom(f;) 2 dom(h;), and forC € dom(h;), p [ilkp ParPy
“£(0) = hi(<).
(4) d? D dP.
(5) Aldr' CA.
(6) for every v € A(a) and i € A with fi(a) = v,
p+il Pk, “F(v)o=F'(v)o and F(v)1 <pg,y, F'(V)1".

i.e.
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(7) For ¢ € dr’,

eplnln b (O =10
o for v € A(w), write F(v) = (PBV/V’ qG), and every [ with fi(a) = v, we
have

PR A Fpyap, 00 =1(Q)

Definition 6.5 (The extension relation). Let

P = ({fo) ™ (Pyy jagr@0)) ™~ ({fam) " (Ps s yr 1)) (90, 5, A F),

and p’ € P,. We say that p is an extension of p’, denoted by p <, p/, if there is
ge A orfi= (), such that by letting p* = p’ + [ and write
p* = (<h0>A<P§'0/fYO;7;0>)A e A<<hm71>A<P€'m71/fym715’ﬁmfl>)ﬂ<t07t7 AlaF/>7
we then have that
() pIn<p*Imin P, *Ps, /a4, ,, namely,
® Op—1 = TYm—1-
e p r Panfl Sanfl p* F Pan—l'
LY f Pan,l H‘an71 “/Bn—l = ;Y'm—l and q SPB 'fm—l” (We can

. n—1/0n_1
tak*e Brn-1 = 'ym—l)'
(2) dP 2 dP .
(3) Ajar C A.
(4) for every v € A(a) and i € A with fi(o) = v,
p+il Pk, “F(v)g = F'(v)o and F(v)1 <pqy, F'(V)1"

(the <* here is intentional).
(5) For ¢ € dr”,
e plnlkp,

Cp—1

P “g0(¢) = to(€)"-

Bpn—1/an—1

o for v € A(a), write F'(v) = (P3,,,q), then
P i) gy, 00 = OV

Remark 6.6. In Definition 6.5, n = m. This is because « is the first cardinal with
o(a) > 0.

Note that equivalently, p < p’ if there is i such that p is a condition obtained
by extending the interleaving part of a direct extension of p’ + fi. For p’ < p, the
interpolant of p' and p is p* such that there exist unique [ such that p* = p + [i
and p’ is obtained by extending the interleaving part of the direct extension of p*.

Proposition 6.7. (P,,<) has the o™ -chain condition.

Proof. Let {p7 | v < a**} be a collection of conditions in P,. p, can be written
as pl ~(f7, [, A7, F), with the corresponding common domain d”. By shrinking
the collection, we may assume that there are pg,d, b such that for all v, pj = po,
b = AY(a), and d is the root of the A-system {d” | v < a®™*}. Since for each
y<att, (ed and v eb, fJ(C), f1(C) € Va, and F?(v) € V,, we can shrink
the collection of conditions further so that there are x¢ o, ¢, ¥, such that for all
v <att fJ(¢) =x¢o, f1(C) = x¢,, and F?(v) = y,,. Then any two conditions in
the shrunk collection are compatible.

g
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Proposition 6.8. ({p € P, | p is pure}, <*) is a-closed.

Proof. Let 8 < o and (p® | B/ < fB) be a <*-decreasing sequence of conditions
in P,. Write p# = (fégl,f?ﬁl,Aﬁl,Fﬁ'> with its common domain d?. Let d* =
UB/<,3dﬁ/, fi= U5/<5féa/. Let (A%")* be the d*-tree obtained by pulling back A?",
and A* = Ng5(AP")*. Shrink A* further so that min(A*(a)) > 8. By induction
on v € A*(a), we may find f; and F*(v) such that

e for ¢ € d*, fx({) is “forced” to be equal to fﬁ’(g) for some sufficiently large
B’ that ¢ € dom(f%).
o F*(v) = (P4, ,,,4;) is such that gj is “forced” to be a <*-lower bound
of (¢F" | B < B), where FF'(v) = (PBV/V,q'fl>. This is possible because
-, “(PBV/V’ <*) is v*-closed”, where v* is the least inaccessible above v,
and v > (.
Then (f*, f*, A*, F*), where f* = {7 | v € A*(a) is inaccessible}, is as required.
(]

Theorem 6.9. (P,,<,<*) has the Prikry property, i.e. for p € P, and a forcing
statement p, there is p* <* p such that p* || ¢.

To prove Theorem 6.9, we start with the following lemma.

Lemma 6.10. Let p € P, and ¢ be a forcing statement. Then there is p* <* p
such that if 1 = ro " top(r), r < p*, r || ¢, and p’ is the interpolant of r and p*,
then

ro” top(p') || ¢ the same way.

Proof. Assume for simplicity that p is pure and write p = (fj, f,A,F ) with its
common domain d. A forcing A consists of conditions of the form g = (go) ™4,
where there is a common domain d, such that

e dom(go) =dy, §= (9» | v € A(v)), and for all v, dom(g,) = d,.
e for ¢ € dy, fo(¢) < a and for § < o inaccessible, ”_PV*PB ) “gp(¢) < a”.

For ¢°, g" € A, define ¢° <4 ¢* if g) 2 g§, and for v € A and ¢ € d, H_P,,*PB
“g9(¢) = gL(¢)”. Clearly, A is at-closed.

Let N < Hy for some sufficiently large regular §, <*N C N, |[N| =«, d,V, C N,
p,P,A € N. Build an A-decreasing sequence (f7 | v < ) below <f0>/\f'such that
for every dense open set D € N N P(A), there are unboundedly many v < « such
that fY € D. Let f* = <f§>“f* be the maximal <*-lower bound of (f7 | v < «)
and d* be its common domain, so d* = NNatt. Let A* be the d*-tree which is the
pullback of A. Note that A* C N. We may assume A* is generated by B* C Byx.

We are now going to consider an A-decreasing subsequence (f7 | v € A*(a)) of
(f7 | v < a), together with (¢%, | v,v" € A*(a)) and (A” | v € A*(«)) which satisfy
a certain property, and

/v

e for each v/, (¢¥, | v € A*(a)) is forced to be <*-decreasing below ¢,, where
F/) = (B i)
o for v < v, ¢% =dg%.
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All the proper initial subsequences will be in N (the key point is that <*N C N. Let
v € A*(a) and suppose that (f7 | v/ < v,/ € A*(a)), <qg’ |V <v, Vv, pe A*(a)),
and (A" | v/ < v,V € A*(a)) have been constructed. For v/ < v, let ¢4 = ¢ . Let
/' be the maximal lower bound of the sequence (f7" | v/ < v, € A*(a)). For p >
v, Let ¢, be a P,-name of a condition in PBp/p which is forced to be a <*-maximal

lower bound of (qg')w@. This is possible since I, “(P; ,,,<") is vt-closed” and
note that (¢; | p > ) € N. Consider the following set D, C A. g = (o)~ g € D,
with the common domain dg, if either (go) ¢ is incompatible with <f0>’\f, or the
following holds:
e for every ji € A* with ji(a) = v, dom(fi) C d,.
e there are )
— a dg-tree A with min(A”(«a)) > & :={¢ | H € P,(tIF, “B, =&")},
and
— a function F” with dom(F") = A”(«),
— for pe A%(a), I, “F¥(p)1 <* 427,
such that for every r € P, PBV i if there are hg,h, A’, and F’ such that
r(ho, B AL FY) <707 gy, (g0 |V € AY (), A7, FY),
and
rﬂ<h07 E, AI7FI> ” 2
then
7 {gu, (95, | V' € A”()), A”, F") || ¢ the same way.

Claim 6.11. D, € N s open dense.

Proof. The parameters we use to define D, are: A, p, and P, * PBV Ju Thus,
D, € N. To check the openness of D,,, note that if §° <, g' and §* € D, with the
witnesses AY. and F”, then g° is also in D, with the same witnesses.

It remains to show that D, is dense. Let go™g € A. If (go) g } <f0>’\]?7 then
we are done. Suppose not, we may assume (go) G <a <fo>“j?. By Proposition 4.1
for v, let (re | € < (§*)™T) be an enumeration of elements in P, * PBV/V (with some
repetitions if needed). Build sequences ((h§)~h), (A¢, Fe | € < (€*)*) such that

. <<h8>”55>5§(5*)++ is A-decreasing, and is below (go)™g.

o (Ac | € < (&9)TH) is a dom(h)-tree, for each ¢, A¢ is a dom(h)-tree,
min(Ag¢(a)) > £*, and for £ < ¢, A&’ projects down to a subset of AS.

o for v/ € A¢(a), (Fe(V)1)e<(ex)++ is forced to be <*-decreasing below ¢, .

o for £ < (&%), if there are hy, B, A, and F’ such that
re (W, W' A’ F'
is a direct extension of
t* =g (WS (WS | p € Aeqa (), At Fesn),

and
Tfr\<h’67 Hlv A/a Fl> |F %

then t* decides ¢ the same way.
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The construction is straightforward, and for a limit £, we can take the obvious A
and Fr which satisfy the requirement. Finally, let (go) "¢ = <hé€*)++>”ﬁ(f*)++,
AY = A(gey++, and F¥ = F(g-y++. These will be the witnesses for (go) g € D, .

O

Let v, > sup, ., 7. such that f7 € D,. Also, we obtain the witnesses, A" and
FY. Let ¢, = q;. For p > £*, let g5 = F"(p)1 if exists, otherwise, let ¢ = ¢j.
We also take ¢, = ¢ for other p where ¢} is not yet defined. This completes our
analysis.

Assume that the pullback of A to the d*-tree has a subtree which is generated
by B” € E(d*). Let A** be a d*-tree generated by A,B”. Let F** be a func-
tion with dom(F**) = A**(«) and for v € A**(a), F**(v) = <Pﬁu/v’q;*>’ G is
the <*-maximal lower bound of (q'z/),,/eA(a). This is possible since (qg/)y,eA(a)
stabilizes after the stage v/ = v (equivalently, we take ¢* = ¢~). Then p* =
<fg’f*,A**’F**> S* p.

We now show that p* satisfies Lemma 6.10. Let p’ < p* such that p’ decides ¢,
p’ is of the form

p/ = T/\<h67 E/7A/7F/>’

Without loss of generality, assume that p’ IF . Let p be the interpolant of p*
and p’. We consider the notions of the proof of Claim 6.11. Say that r = r¢. By
the construction of A**; we have that A** projects down to a subset of A¥. This
makes p’ <* t*, and hence, t* I ¢. Thus, r¢™ top(p) I ¢. This completes the
proof of Lemma 6.10.

O

Proof of Theorem 6.9. Let p be a condition and ¢ be a forcing statement. For
simplicity, assume p is pure and p satisfies Lemma 6.10. Write p = (fo, f, AF), d
is the common domain for p. Assume A is generated by B C By. By shrinking B,
assume that for v/ < v, Ik, “B,, < V7.

By Remark 2.4, let {g, | v < v*T} be an enumeration of p € B and p(a) = v.
Let {r¢ | & < v} be an enumeration of r € Uy, P, * PBV//V" We are only
interested in pairs ¢, 1, such that r¢ < stem(p + 7¢) for some 7z < p,. Build
(@7 |y <vtt € <v)yand (f7¢ |y < vtt, € < v) such that

(1) (7,€) < (v, ¢') implies Ik, “¢7 & <* 7€,

(2) for each v, and £ < &’ such that r¢ and re are in the same forcing P,/ *
PB.,//V” we have that IFPV/*PB o “rrg < fré€< f,o H;l”-

(3) there is r3 ¢ <" rg such that r2 ~(f1€, (P, 7)) <7 e (frie
1t APy, s 7)), and 17~ (f47, (Pg, 1> ¢7*t1)) decides ¢z, 4, , where G,

is the canonical name for generic over P, PB v and

Prepe = € Gt top(p + 7 (e)) |l )-

This is possible by the Prikry property at the level below a. By extending further,
we assume that rg“(f%&, (Ps, /0 GrErY) I apiﬁc#g for unique i € {0,1, 2}, where
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0% e =3t € Gu(t top(p + 7~ (ue) I ),
Prope = 3 € Gt top(p+ 76 (ue)) IF ),
02 =Bt e Gt top(p+ 7 (ue)) | @).

For limit ¢ > 0, take ¢7¢ which is forced to be a <*-lower bound of §7¢ for & <.
Also for v > 0, take ¢7°° as a <*-lower bound of {¢7*¢ | 4/ < 7 and all ¢}. The
construction proceeds since the following the following hold:

o |-, 7 (PBV/V,S*) is v*-closed”, where v* is the first inaccessible cardinal
greater than v. In particular, it is v3-closed.

o For v/ <wv,lkp, 2, C(vT,vtt) is vT-closed.
vl t /

N2

Finally, let ¢} be the maximal <*-lower bound of ¢7-¢.
For each p = ., and v/ < v, consider the family F = {f?¢ | 7 (a) = v/}. This

is forced to be <-decreasing in C(v*,v+*) (in VP”'*PBV'/”') below f,» o u~!. Let

/Y, be the maximal <-lower bound of F. Fix u. We can extend further each f/;
so that for v, vy, dom(fl’j(,)) = dom(ffi). Let F, = {f!, | V' < v,V € A(a) U{0}}
where

e for each p, f7, is forced to be stronger than f, o u~!.

e there is d,, such that for all v/, dom(f",) = d,,.

Consider G = j(p — F,)(me(d)). Then G = (f5) " (f} | V' € A(w)), with some
common domain d*. Note that the collection B* of 1) € OB, o(d*) such that ¢ |
d € B, and for v/ < 9(«) including 0, ”_P,,,oPB o * o7l < f;b,m” is of measure-
one. Let A* be generated by B*. Now let F* be such that dom(F*) = A*(a) and
for each v, F*(v), = ¢i. Let p1 = (f5, f*, A*, F*).

Claim 6.12. Let p = pr+ 7 ), T=7 [ d, p=¢ [ d. Let v/ = 7(a) and
v=p(a). Then r*~(f op™', F*(v))) decides @ﬁ,u for some unique i.

Proof. Write r = r¢ and g = p,. Note that I fF o=t < fH < f7¢ and
I- F*(v), = ¢ <* ¢7¢*1, hence, we are done. O

For each r such that r < stem(p; + 7) and 7 = 7 | d, we indicate 7 = 7,.. For
i < 3,let By = {1 € B* | r* 7 (f o™, F*(¥b()))) IF gpiﬁﬂﬁm}. For each r,
let i(r) < 3 be unique such that B, ;) is of measure-one. Let B, = N{B, ;¢ |
re P, x PBy/v} and B** = A,B,. Let A** be the d*-tree generated by B** and

F** j— F* rB*. Let p* — <fg’f*7A**’F**>'
Claim 6.13. p* satisfies the Prikry property.

Proof. Let p’ < p* with p’ || ¢, Assume p’ I ¢ and the interpolant of p’, p*, say p,
is such that p = p* + [ with the minimal n* = |fi|. If n* = 0. then we might apply
p’ for the Prikry property instead. Assume n* > 0.

For simplicity, we establish the case n* = 2. Say p = p*+ (m,¢). Write 7 = 7 | d,
w=1ld. Let

p/ = (907 <PBO/y07q'O>)/—\(gl7 <PB1/V17q.1>)/—\ tOp(p/)
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Since p satisfies Lemma 6.10, we have that
(90> (P, /»60)) " (915 (Pg, /,,1561)) " top(d) IF .

Set 7 = (go, <PBO/V0,QO>). Recall that 7~ (f o™, F**(11)) IF @&, for a unique
i, so i(r) exists. We claim that i(r) = 0. Otherwise, we may assume i, = 1 (the
case i, = 2 is similar). Let G be generic containing r* (g, (Psl/yl,(jl)). Then

there is ¢t € G such that ¢ top(p) IF —p, but if ¢t < r* (g1, <PB1/V1,41>), we get a
condition having contradictory decisions, which is a contradiction.

We now show that s* = r*7(fs o1, F**(11)) IF . Suppose not. Let s < s*
be such that s IF —p. Write s = 50751752 top(s) where sg < r* and sp™s1 <
7 (fy o™t F**(11)). Let G be generic containing sy s1, by the property of
i(r), let s € G be such that s’ top(p) I+ o, but then by extending s’ (in G) if
necessary, s’ 87 top(s) < s, s’ top(p), so the condition forces both ¢ and —p, a
contradiction.

Consider ¢ = r*~ top(p* + (7)). Then the number of the block is 1. We show
that the condition forces ¢. The point is for every extension of ¢ can be extended
further to be an extension of ¢ + ('), but since ¢’ € B, ¢, then the condition will
force . Hence, by a density argument, ¢ I ¢, but this contridicts the minimality
of n*.

O

O

Now we show that all cardinals are preserved. The forcing P, is att-c.c., so it
preserves all cardinals greater than o™.

Proposition 6.14. For a cardinal 8 < a and a Py-name of a subset of B, IFq

) P,*P; . : o
“X e Vv for some v. In particular, P, preserves cardinals and cofinalities
below .

Proof. Let p = stem(p)™ top(p) where stem(p) € Q. Let X be a name of a subset
of 8. Find p* <* p such that stem(p*) = stem(p) and for each v < 3, each
s < stem(p), there is s* <* s with s*~ top(p*) decides “y € X”. Let X’ be a
Q-name such that if G is a Q-generic, X'[G] = {a | 35 € G(s™ top(p*) IF e € X)}.
Then p* I+ X = X'. O

The forcing singularizes o to have cofinality w, and add att subsets of a: for
v € [a,att), define ¢, : w — « as the following. By a density argument, let
p € G be such that the common domain contains v and for p appearing in AP,
v € dom(y). Assume that n? is the number of the blocks in p \ top(p). For n > n?,
find any p” € G such that the number of blocks in p7 \ top(p?) > n. Write

p’Y =50 - ASTL*QA(fnfla 821—1)/\ T A(fkflv 311—1)/\<f’ vaa F>
By compatibility between p” and p, we have that f(v) has to be of the form &,
& € dom(frn—1), fn—1(0) = &1, and so on. Define t,(n) = fr_10---0 fr_1 0 f(7).
Clearly t, gives a cofinal sequence of « of length w, and hence, « is singularized to
have cofinality w. Again, by a standard argument with the Prikry property, ot is
preserved. Since the forcing is ™ -c.c., all the cardinals are preserved. One can
show that for v < «/, there is p € G such that for every relevant object 1 appearing
in the tree part, 7,7 € dom(u). Note that such p is order-preserving. From here,



20 MOTI GITIK AND SITTINON JIRATTIKANSAKUL

use a density argument to show that ¢, <* ¢.,. Hence, the forcing violates the SCH
at a.

The set C,, is derived from the generic object as the following. If G is P,-generic,
define ¢’ = rng(t,) U {a}. Each condition p € G is of the form

S/—\ <f7 f’ 'A7 F>
where v, = to(k + 1). In this case, the forcing Pék/”k also derives the set C* =
Ce,jve € [k, &), where to(k 4+ 1) = v < & < Vpy1 = ta(k +2). Let Cy =
C'UUg<,C*. Then C, C a+ 1, max(Cy) = o, C, \ {a} is a cofinal subset of a,
containing a subset of order-type w. So far, we have verified items (1) through (3)
of Proposition 4.1.

Definition 6.15 (The quotient forcing). Let Pa/a be the P,-name of the trivial
forcing ({0}, <, <*). In VP let C’a/a be the Pa/a—name of the empty set. Now
assume that 8 < «. Define P, /3 as the following. Let G' be Pg-generic. Define
P,[G] = P, /5|G] as the forcing consisting of conditions of the form
p=(Pp (Gl d" )" ({fo), (Pgy 0o Glid0)) -+~ ({(fr=1)s (s, s, |Gl Gn=1)) " (90, G, A, F))
where n > 0 and
(1) B < B < a, so Pg|G] was already defined by recursion, which is just
Psi/5]Gl, g0 € Py/[G].
(2) f n >0, then ag < -+ < a1, and for i < n,
e let d; = dom(f;), then d; is an a;-domain, d; € V.
e for ¢ € dy, IFp, ) “fo(¢) < ao”, and if @ > 0, then for ¢ € d;,
Fp 1B, o, 161 filQ) <ai”.
° “_Pai[G] “ap < B < a;+1”, where oy, = a.
o ltp, (6] “Gi € Py, )0, [G]".
(3) Ais a E(d)-tree.
(4) d € [att]=%, d € V, is the common domain for p, i.e. dom(gy) = d, and
g=1{g, | v € A(a)) and for each v, dom(g,) = d.
(5) Fix¢ €d. Ifn =0, thenlrp,, ¢ “g0(¢) < @”, otherwise, I-p, (GlPs.
n—1 n—1/%n—1
“go(c) < Of”.
(6) for v € A(a) and ¢ € d, H_P,,[G]*PB
(7) dom(F) = A(«). . .
(8) for v € dom(F), F(v) = <PBV/V[G],q'>, where IFp g “v < B[G] < o, ¢ €

(G

/u[G] gy(c) < a’.

PBV/V[G]”
Back in V. If p € P, /8, then by density, the collection of pg € Pg such that pg
decides n, ag, - ,ap_1, dom(fp),-- ,dom(f,_1), the common domain, A, ¢’ (as

the equivalent PB’ p-hame, and so on), is open dense. In this case, we say that pg
interprets p. All in all, for such py which interprets all the relevant components of
P, let p; be such the interpretation. Write pg as 7o (g) and by the interpretation,
we may write

P11 = (<Pﬂ’/57 q/),\(<f0>7 <PBO/(10’ q0>) U A(<fn—1>a <PBH_1/an_174n—1>)/\<g07§7 A, F>

There is a natural concatenation py with p;, written by po ™ p1, which is

r= 7’0/\(<g>a <P,(3’/,87q/>)A T A(<fn—1>a <P3n71/an,17qn—1>)A<907§7Aﬂ F>
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Then r € P, with r [ Pg exists. We denote p; by r/Pz. For py and p; in Pa/ﬁ,
we Say that po < pp if there is p € G# such that p interprets pg and p;, and
P po <o pTp1. Also define pg <* p; if there is p € G*# such that p mterprets po
and p1, and pTpy <% pTp1. One can check that the map ¢ : {p € P, | p |
exists} — Pg * Pa/ﬁ defined by ¢(p) = (p | Ps,p/Pg) is a dense embedding, where
p\ Pg is the obvious component of p which is in P, /- Note that if G is Pg-generic
and H is P,[G]-generic, there is a generic I for P, such that V[G x H| = V[I],
where I is generated by {p | p | Ps exists, p | P3 € G and (p/Pp)[G] € H}. If I
is P,-generic and for some p € I, p | Py exists, we can get G which is Pg-generic
and H which is P, [G]-generic such that V[G x H] = V[I| where G is generated by
{p 1 Psg|pelandp]| Pgexists} and H = {(p/Fs)[G] | p € I and p | Py exists}.

In VP5, let Ca/ﬁ be a Pa/ﬂ-name of the set described as the following. Let G
be Pg-generic. and H be generic over P,[G] = Pa/ﬁ[G]. Then let I = G x H be
P,-generic. I derives the set C, C o+ 1 and G derives the set Cz C 3+ 1. Let
Casp = Ca \ Cp.

The following have the same proof as for P, essentially. The one that we would
like to point out is the closure property.

Proposition 6.16. o kg “(Pa/ﬁ,g*) is at-c.c.”
o lkg “(Pa/g, <,<*) has the Prikry property.
o kg “(Pa/,@,g*) is B*-closed”, where B* is the least inaccessible cardinal
greater than .

Proof. We only proof item (3). For simplicity, let ' < 8* and in V5, let (p, |
v < B') be a <*-decreasing sequence. For simplicity, we consider the case where

v = (Pe[G),q") " (9q,G7, A7, F7) with the common domain d”. Since (P¢[G], <*)
is B*-closed, let ¢* be a <*-lower bound of ¢”. In V, let d* = U{d | 3v3p € Ps(p kg
d.,y =d)}. For all g (including 0) with gg exists, let dom(gj) = d*, and for ¢ € d,
g5(¢) is forced to be the same as the interpretation g3(() for some sufficiently large
v, if exists, otherwise, g3(¢) = 0. Let A* =n, N, {A | A is the pullback of AP

to the d*-tree} where p IFg “A7 = A7P”. By shrinking, assume min(A*(a)) > 5.
Finally, for each v € A*(«), the forcing which is relevant to F7(«) (for any 7) is
greater than ’y—dosed in the direct extension, and v > 3, so we can find F* such
that (P¢[G],¢*) " (g%, 5", A*, F*) is a <*-lower bound of (p, | v < f'). O

With all the definitions, one can verify the rest of Proposition 4.1.

7. THE GENERAL LEVELS

Let a@ < Kk be inaccessible. We may assume that « is greater than the first
with o(8) = 1. This forcing will generalize all of the forcings in previous sections.

Definition 7.1. A condition in P, is of the form

p = stem(p)” top(p).
‘We have two cases.

(1) stem(p) is empty. In this case, p is said to be pure.
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(2) stem(p) is non-empty. In this case, p is said to be impure. Then stem(p) is
of the form

(503 <PBO/(103 QO>)A e A(Sn—lﬂ <Pf3n,1/an,17qn—1>)’
for some n > 0. We say that the number of blocks in stem(p) is n. We
have that
o ap < - < ap_q <o
o for all 4, Ik, “oy < 51 < ;17 , where a,, = a.

i (SOa <P30/a0740>)/\ T8y 1 € Pan_1~
n—1/(¥n—1”'

Equivalently, stem(p) € P, * P

*¥n—1 Brn-1/Cn_1"

top(p) also depends on stem(p) and a. We have several cases.

° ”_an,l “q'n_l S P,B

(1) The case where p is pure.
(a) o(a) = 0. Then top(p) = (f), f € Cla™,a™T).
(b) o(a) > 0. In this case, top(p) = (fo, f, A, F), where
e Ais a d-tree, with respect to E,(d).
e dom(F) = A(a).
e for v € dom(F), F(v) = <PBU/V,q> where I+, “v < B, <

aand g € PBV/V”'
o f=(fveA)

e there is a common domain d, which is an a-domain, dom( fo) = d
and for all 3, dom(f3) = d.
o f e Cla™,a™) and for each v € A(«a), and ¢ € d, ”_P,,*F"B
“fuQ) < a”. ’
(2) The case where p is impure, say stem(p) € Po,_, * P /o = Q.
(a) o(a) = 0. Then top(p) = (f), dom(f) =d € V is an a-domain and for
¢ed, kg “f(¢) <a”.
(b) o(a) > 0. In this case, top(p) = (fo, f, A, F), where there is a common
domain d € [atT]=% d € V, d is an a-domain such that
e Ais a d-tree, with respect to Eq(d), min(A(a)) > sup{y | 3r €
Pan,1(r I+ ﬂnfl = ’7)}
dom(F) = A(a).
for v € dom(F), F(v) = <PBV/V7Q> where I+, “v < 8, <
a and ¢ € PBV/V”'
f={fvlveA).
dom( fo) = d and for all v, dom(f,) = d.
for ( e d, IFg “fo(¢) < a”.
for v € A(a) and ¢ € d, H_P"*PB,,

/v

“f,B(C) <a.

Definition 7.2 (The one-step extension). Assume o(a) > 0. Let p = stem(p) ™ (fo, f, A, F)
with the common domain d. Let (u) € Levg(A) with u(a) = v. The one-step ex-
tension of p by u, denoted by p+ (i), is the condition p’ = stem(p’) " (g0, g, A", F’)
such that
(1) if o(v) = 0, then stem(p’) = stem(p) ™ (fo o u=t, F(v)), where dom(fy o
pt) = ng(p), for v € dom(p), fo o n™ (u(v)) = fo(v).

/v
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(2) if o(u(a)) > O, then stem(p’) = stem(p)™((fo o n™' . (fuon™" | v €
(A L)), A Ly F'), Fu(a)), where dom(F') = (A | )(v), and for
& F'(&) = F(&)(recall that A | p = {Ffopu™! | # < p and for all i,

o(ri(a)) < o(u(a)), so (AL u)(v) € Ale) Nv). _
(3) Write @ as the forcing in which stem(p’) lives. Say @ = P, Py ;.- Then
o kg “go = fu & ", namely dom(go) = d, for ¢ € dom(p), go(¢) = p(¢),
and for the other ¢, go(¢) = f.(¢)
e G ={gp | /?” c {7 e Ay | To(a) > &*}, where £ = sup{y | Ir €
Py (1 -0y By =)}
o A'={TcAy|m(a)>E}
o F' =F | (A(a)).
We define p+() as p, and by recursion, define p+ (g, - - - , tin) = (p+{t0, -+, tin—1))+
(tn)-
Definition 7.3 (The direct extension relation). Let p = stem(p)™ top(p) and
p’ = stem(p’)” top(p’). We say that p is a direct extension of p’, denoted by
p <X p/, if the following hold.

(1) stem(p) <* stem(p’) (in some Q := Py * PB’/a’)'

(2) If o(ar) = 0, write top(p) = (f) and top(p’) = (g), then dom(f) 2 dom(g),
and for ¢ € dom(g). IFg “f(¢) = 9(C)".

(3) Suppose o(a) > 0. Write top(p) = (fo, f, A, F) and top(p') = (g0, g, A, F’').
Let d? and dP be the common domains for p and p’, respectively. Then

o d?Ddv.

o Aldr CA.

o for (€ dP, kg “fo(C) = go(¢)”.

o for v € A(a) and fi € A with ji(a) = v, say F(v) = <P/3 /u» @), and for

¢ € d”, we have

P (Pt Py ) g, “FlC) = 0(0).

o for v € A(a) and i € A with fi(a) =
p+il Pk, “F(v)o = F'(v)o and F(v)1 <y, F'(¥)1”

Definition 7.4 (The extension relation). Let p = stem(p)” top(p) and p’ =
stem(p’) " top(p’). We say that p is a extension of p’, denoted by p <, p/, if
the following hold.

(1) The case o(«) = 0. Then

e stem(p) < stem(p’) in some Q = P, * Pﬁ e
e Write top(p) = (f) and top(p’) = ( ). Then dom(f) 2 dom(g) and for
¢ € dom(g), stem(p) - “f(¢) = g(¢)”.

(2) The case o(a) > 0. Then there is i (possibly empty) such that if p* = p'+[i,
and we write top(p) = (f,f,A,F) and top(p*) = (g,g, A*, F*), d? and d*
are the common domains for p and p*, respectively, then

stem(p) < stem(p*) in some Q = P, * PB ol
o d’ Dd".

Aldr C A

for ¢ € dP", IFg “fo(¢) = go(¢)”.
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o for v € A(a) and i € A with ji(a) = v, say F(v) = ( ﬁ/y,q> and for
(edp', we have

p+il (P * P@ /V) H_P *PB P “fu(g) = gu(()”-

e for v € A(a) and i € A with fi(a) = v,
p+il Pl “F(v)o = F*(v)o and F(v)1 <p,, F* )"
(The last <* relation is intended).

Equivalently, p < p’ if there is @ such that p is a condition obtained by extending
the interleaving part of a direct extension of p’ + . We call p* the interpolant of p
and p’. To be precise, p* is the unique condition such that p* = p + i for some [,
p’ is obtained by extending the interleaving part of a direct extension of p'.

Proposition 7.5. (P,, <) has the o™ -chain condition.
Proof. Similar to the proof of Proposition 6.7. O
Proposition 7.6. ({p € P, | p is pure}, <*) is a-closed.
Proof. Similar to the proof of Proposition 6.8. O

Theorem 7.7. (P,,<,<*) has the Prikry property, i.e. for p € P, and a forcing
statement p, there is p* <* p such that p* || ¢.

If o(a) =0, any p € P, is a finite iteration of Prikry-type forcings, hence, it has
the Pirkry property. The proof for o(a) = 1 is similar to the proof of Theorem 6.9.
We assume o(a) > 1. We need a few lemmas before we prove the Prikry property.

Lemma 7.8. Letp € Po, B < o(a) with its common domain d, top(p) = (f, f A F).
Fixr e P x P v . Let 7 € A be unique such that there is r* < stem(p + 7) and

r 15 obtained by emtendzng the interleaving part of r. Suppose is a measure-one set
B € E, g(d) such that

(1) for everyv € B(«), there is ¢, such thatlk, “¢; <* F(v),”. Write F'(v); =
G5 for all v.
(2) for every p € B with v = p(c), there are v, <* v, fu, fu, Ay, F such that

<fu,fya <P5 /Vvql/>) <*
(fu/ou ot 7€ (Ar 4 1) Ar 4 B T (As L1, FO))
Then there is p* <* p and r** such that
o for i) € Levg(A) with p = ¢ | d, o(p(e)) = 6, we have that r, = r**

P (top(p*) + () <5 (Fas Fouo Aus Fs (P 0 5))-
e cvery extension of r** 7 top(p*) is compatible wzth r** 7 (top(p*) + (¥)) for
some ) with o(¢(a)) = B.

Proof. Assume for simplicity that p is pure. First, we can shrink B such that there
is r*, for all p, 7, = 7*. Then let

12 = iBa s (0 fu)(mea,p(d)),
F* = jpa, (0 fu)(meq 5(d)),
A" = jp, 4 (p— Ay)(meq p(d)),
F* = jg, ,(n e Fy)(mea g(d)).
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e f3 is forced to be an extension of jg, , (1 — for o 1) (meq 5(d) = for.
Say d* = dom(f,).

e by coherence, let By generate A*, we have that By € Ny<gFq g(d*), A* C
A.

e for each v € A(a), F*(v); is forced to be a direct extension of F(v);.

dom(f*) = A*(a).

for v € A*(a), f} is forced to be a direct extension of f,.

Let f* be f U{(7,0) | v € d*\ d}. Let mc = mc, g(d*). Let mc = mc, g(d*) =

(ja,ﬁ rd*) . Then

® jop(fur)ome= f.

® jop(A*) ] mc= A"

o Let jo,s(f*) = (f;)y- Then (fjome™ |y € A*(a)) = f*.
There is a measure-one set By € E, g(d*) such that for ¢ € By,

(1) p:=2v 1 deB.
(2) fl o ¢ e = fu-
(3) ALy =A,
(4) F*(§) = (5) for £ € A, (p(@)).

(5) (fyov™t v €A = fu
For v € Bi(a), let f; = f, U{(v,0) | v € d* \ d} and F*(v); = F'(v). Finally, let
Bs be the collection of d-object 1 with o(w( )) > B and By | ¢ € Eyy,s@[d* N
dom(v))]). For v € By, let fi = f, U{(7,0) | v € d* \ d} and F*(v) = F’( ). Let
A** be generated by By U B; U Bg, and p* = (fa‘,f*,A**,F*>. To show that p*
satisfies the properties, note that for ¢ € Levg(A) with o(¢(a)) = 8, ¥ € By, and
by the property of B, the first requirement for p* is straightforward. To show the
predense property, let s < p* such that there is an initial segment of s, rg, which
is an extension of r**. Let ¥ € A** be unique such that there is s’ <* p* + 7
and s is obtained by extending the interleaving part of s’. If ¥ = ), then pick any
1 € Levg(A®) such that o(v(a)) = B, then s+ (¢) < r**7p* + (¢ | d*). If 7 = 0.
If for all ¢, o(7;(e)) < B, then take any 1 as before with 7 < . Since ¢ € By,
then the key point is that 7 € A,. From here, we can show that s < s**~p* + (7).
Suppose now that i is the least such that o(r;()) > 8. If o(m;(c)) = B, then as
before, s < r**~p* 7 (r;). If o(ri(a)) > B, let p = 7; | d, and let ¢ € A, which
appears in the corresponding measure-one set when we add 7;. Then v’ = o T[l
for some i. We can then show that s + (') " r** "p* 4+ (¢b). This completes the
proof. O

Lemma 7.9. Let p € P, and ¢ be a forcing statement. Then there is p* <* p such
that if r = ro™ top(r), r < p*, p’ is the interpolant of r and p*, and r || ¢, then

ro” top(p’) || ¢ the same way.

Proof. The proof is essentially the same as the proof of Lemma 6.10. (]

Lemma 7.10. Let p be a condition and ¢ be a forcing statement. Then there is
p* <* p, top(p*) = (f*, f*, A* ,F*) such that for every object i which appears in
A, say v = p(a), we have that for every r € P, * PB v for some V' < v, there is
r* <r* and a unique i € {0,1,2} such that
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Proof of Theorem 7.7. Let p be a condition and ¢ be a forcing statement. Assume
p is pure and satisfies Lemma 7.9. Write p = (f, f, A, F') with its common domain
d. We will build a <*-decreasing sequence (p” | v < «) below p, and write p? =
(f7, fY, A7, F7), where the common domain is d”, such that

for v < a, {7y | v € A7(a)}| < n. In the end, we take p* = (f*, f* A* F*)
such that f* = UfY, A* = A A", for n € A*, F*(n); is a <*-lower bound of
{F”(n)}, (possible since the number of v such that F”(a) exists is small), and
”_Pn*f)g,,/n “fp =Ufy7. Then p* <* p and then we show that p* satisfies the Prikry
property. Let (r, | v < a) be an enumeration of r € UV<aPV*P/3V/y such that there
is 7€ A, r < stem(p + 7), and we let 7, be unique such that there is r* <* p+ 7,
7, is obtained by extending the interleaving part of r* only.

For ~ limit, take p” as a <*-lower bound of (p?" | 4/ < 7). Suppose p? is
constructed, we now consstruct p¥T!. Assume ry € Py PB o Fix v > V. By
Remark 2.4, assume that A7 is generated by BY C Byv. Let {ue | € < v1} be the
collection of p € BY with p(a) = v. Let G, be the canonical name for P, Py -
generic. By the Prikry property, let r., ¢ <* r.,, f7¢, AV¢ FV¢ ¢ and f%g, such
that

T77$A(f%£7 f%57 A%&’ F%E7 <Pﬁ,,/w q;>) <

TW,—\( 3’ Oﬂglv <f7’7Y | UAS (A% J,Mg)(V»,A;W \ /J'&F’Y [ (A% J,/Lg)(V),F’Y(U)),
and 7., ¢~ (fE, frE ATE FTE (PBV/V,q':» decides

P7,e =3 € Gu(t™ (top(p + (7, (ng)) | d))-

Notice that ¢ does not depend on £. This can be done since I, “(PBV/V’ <*) is
v3-closed” (it is much higher than v™3-closed). By extending further regarding
the direct extension relation, assume that rmgﬁ(f%i, FE ATE FYE <PBV/V’ g:)) I+

go%m for a unique ¢ € {0, 1,2}, where

02 e =3t € Gt top(p + 76 () - ),
Pk e = Tt € Gy (¢ top(p+ 7~ (ue)) I+ ),
02 e =Pt € Gu(t™ top(p + e~ (ue) || @)
We now change some notations to ease us at the end of the proof. For each p1 = pg,
and v = p(a), let frye =1, fl = f7%, for each n, fi = f1¢, A* = A7¢, and
F* = F7¢, Then let i7, be the unique i such that Ty e (75, f%f, AVE F7E, <PBV/V’ q)) Ik
i ;
o .- For B.< o(a), let B! 5= {u|o(u(a)) =B and i, = i}. There is unique i, g
such that B;"”ﬁﬂ € E, p(d"). We now consider two cases.
Case 1: for all B < o(a), i, = 2. Let A7™! be a d’-tree generated by
Ug<o(a) B2 g, for v € A7+ (a), F7*(v) = (P ., d5) and p7*t = (f7, f7, A7+ Pty
Case 2: there is § < o(a), 4,3 < 2. For each p, we have that for each u € Bij’ﬁ‘j,

say pu = pe, we have v, = ry¢, fu = s, f;; = f’w{ A, = AYE and F, = F7E,
Apply Lemma 7.8 to obtain p¥*! <* p7,
We now finish the construction.
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Claim 7.11. p* satisfies the Prikry property.

Proof. If there is p** <* p* which decides ¢, then we also finish. Suppose not. Let
p** <* p* with the minimal number of blocks of p** such that p** || ¢. Without loss
of generality, assume p** IF ¢. We demonstrate the case where n?” = 2. Assume
that p** is of the form

(90: Gos Ao, Fo, (P, 100 G0)) (91,61, Av, Fr, (P, 5 61)) ™ (B, T, H).
Let s <* p*+ (1o, 1) be such that p** is obtained by extending only the interleaving

part of 5. Let o = o | dand iy =y | d. Then r = (go, Go, Ao, Fo, (P, ., o)) <
stem(p + (po)). Hence, r = r, for some v. We now consider the construction of
p’Tl. Let v/ = o, ¥ = a1, and ¥ [ d¥ = p. From the notation of Case 2 in the

construction of p?*!, we have that r, = r, ¢ <* r, and

(91,51 AL FL Py @) <517 (s Fus A Fis By, 2 60))-

We claim that there is 8 < o(«) with i, g3 = 0. First, note that stem(p**) < p +
(10, p1). By Lemma 7.9, stem(p**) ™ top(p + (po, 1)) IF ¢. Thus, it is not possible
for i, o) to be 0 (otherwise, we can choose a generic G, containing stem(p**), and
this will give a contradiction since stem(p**)™ top(p + {uo, 1) IF ). Hence, there
is B < o(a) such that i, 3 < 2 and we chose a measure-one set from E, 5(d”) to
integrate and construct p?™t. If o(v) = $, then clearly i, 3 = 0. Suppose o(v) # f.

Case 1: o(r) < f: Choose 1y € AP such that o(ys()) = B, va = ha(a),
and write us = s | d”. By the construction of p”*', we have that p** +
(12) < p* 4+ (o, 12). Choose G that contains stem(p** + (1)2)), then G contains
r“(fw,ﬁQ,AM,FM, <PEV2/V2,q'fj2>). Since 4,3 = 0 or 1, there is ¢ € G such that
t™ top(p + (po, 1, 2 [ d)) I, but since stem(p™)™ top(p + (ko, p1)) I ¢, by the
choice of G, we have iy 53 = 0.

Case 2: o(v) > B: then choose 12 € Levo(A;) such that o(¢2(cr)) = 8. Consider
p** + (1h3). Note that 1o [ d¥ = 1p o tp]* for some ¢ € Bfﬂ’;. Then use a similar
argument as in Case 1 to show that i, g = 0.

We now conclude that i, g = 0, Recall the notion of 7** from Lemma 7.8. A sim-
ilar argument on the choice of genericity shows that for every ¢ € Levo(Az‘w[))) with

=1 1 d, we have 1 (s fus Aps Fis (Py ey Gagey)) ™ toP(0* + (20, 8)) I .
By a density argument and a predense property stated as in Lemma 7.8, we then

have that 7*~ top(p* + (1)) IF . This contradicts the minimality of n?" , and
this finishes the proof. O

O

We will now consider the cardinal arithmetic, and a preservation of cardinals
and cofinalities together.

Proposition 7.12. For a cardinal 8 < a and a Py-name of a subset of 3, Ikq Xe

VPP As a consequence, P, preserves all cardinals, and o is preserved.
Proof. Similar to Proposition 6.14. (]

Note that unlike the forcing at the level of the first measurable cardinal, P, may
singularize cardinals below «. Since P, has the a™"-chain condition, all cardinals
from o™ and above are preserved.
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We now derive the club C, from P,. For generality, we consider the case o(a)) >

0. Let G be P,-generic. Then for each v < « such that by letting Q, = P, * PBV/V’

we have that G | Q, exists. G | Q, is Q,-generic, and it introduces a set C* UCH»/¥
where 8, = 3,[G | P,], C* C v+ 1 with max(C") =, C%/* C (v, 3,] such that
max(CP /) = B, if B, > v, otherwise, C#/¥ = (). Let C,, = (Urna1Q, exists} (CY U
CP/")YU{a}. Since o(a) > 0, we can perform one-step extension of any condition
so that {v | G | @, exists} is unbounded in «. Like in the extender-based Magidor-
Radin forcing, one can induct {v | Q, exists} has a tail of order-type w°(®. Hence,
in V[G], a is singularized to have cofinality cf(w°(®)). From here and the Prikry
property, one can show that at is preserved. We conclude that all cardinals are
preserved. Also, note that for v < v/ such that G | Q,, G | Q.- exist, we have
that C* U C#/¥ is an initial segment of C"', so it is an initial segment of Cy.
Thus, lim(Cy) = (Ug|c10, exists} 1im(C?) U lim(C?/¥))) U {a}. As in Proposition
7.12, the cardinal arithmetic of cardinals below « are determined at levels below
a. For ¢ < a, we have that by Proposition 4.1 items (3) and (6), either 25 = ¢+
or 26 = ¢+t and 2¢ = ¢ iff € € lim(C) U lim(CA»/¥). Hence, the cardinal
arithmetic below « satisfies (3) of Proposition 4.1. Since a € lim(C,), it remains
to show that 2% = o™

Work with a pure condition p € G. Enumerate {v | G | P, exists} increasingly
as {v; | i < wt@}, Fix v € [a,a™™). By a density argument, let p? < p, p?” € G
be such that if top(p?) = (f7, A, F7), then for every object u which appears
in A7, v € dom(u). Suppose that stem(p?) € P, * PB% Jvi For i < i, define

t,(i) = 0. For i > i., there is an extension p?** € G such that
(1) p** | Py, exists.
(2) by writing pi as

<807 <PBU/a0’q'O>)A T ,—\(Snfl’ <PBn,1/o¢n,17q'n*1>)/—\<fa f7A7 F>7
then (so, (P, /q,,d0)) " -+ sk € Py, , and
e f(v) is a check-name 7y, then vy € fn,_1, where f,_;1 is the first
coordinate of s,,_1.
e by recursion, g, -+ ,7—1 is defined for I < n — k — 1, then v,_; €
dom(f,,—;), where f,_; is the first coordinate of s,_;, and f,,—;(y1-1)
is a check-name ~;.

We define t.,(i) = fx(yn_k_1). For v <+, there is a condition p”7" € G such that
if A7 is the tree appearing in top(p’wl, we have that for every p appearing in
A7 4~ € dom(p) and p(v) < pu(+'). From this, it can be shown that ty <*ty,
which means there is ¢* such that for i > ¢*, t.,(i) < t,/(i). This gives o™ different
functions from w(®) to av. It is easy to show that « is a strong limit cardinal, and
so in V]G], 2% = af(® > ot*. Since P, is att-c.c., 2 = at ™ as desired. So far
we have show items (1), (2), and (3) of Proposition 4.1. It remains to consider the
business regarding the quotient forcings.

Definition 7.13 (The quotient forcing). Let Pa/a be the P,-name of the trivial
forcing ({0}, <, <*). In VP let C’a/a be the Pa/a—name of the empty set. Now
assume that 8 < a. Define P, /3 as the following. Let G' be Pg-generic. Define
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P,[G] =P, /8|G] as the forcing consisting of conditions of the form stem(p) ™ top(p),
where

(1) stem(p) is of the form

(Par[G],@') ™ (50, (Pay /a0 |G, 60) (501, (P s [Glin-1)),

for some n (if n = 0, then stem(p) is only (Ps/[G],¢’)) such that
o Py[G] = Py 5G], and ¢' € Py/[G].
e if n >0, then ap < -+ < a1, and for 7 < n,
— if O(Oéi) = O, S; = <f1>, and if O(Oél') > O, S; = <fi,fi,Ai,F7;>,
where d; = dom(f;) is an a;-domain, d; € V.
— for ¢ € do, IFp,, 6] “fo(¢) < ao” and if i > 0, then for € d;,
I+ ¢ “filQ) < a7
- H_Pai te) “ay < B < Ozi+177, where a,, = a.
- H‘pai (G] “q; € PBzﬂh [G]”.
— if O(Oéi) > 0,
A; is a d;-tree with respects to Ey, (d;) (in the sense of V).
fi={fip | v € Ai(a)).
for each v, dom(f; ) = d;.
for ¢ € d;, IFPV[G]*PBV/U[G] “fin(Q) < ay”.
dom(Fz) = AZ(OQ) ]
forv € Ai(ai), Fi(v) = (P, ,,[G],d). PR 16 v < By < @i
and Ibp, () “¢ € Py ,,[G].
(2) if o) = 0, then top(p) is (f), and if o(a) > 0, then top(p) = (f, f, A, F),
where there is a common domain d, which is an a-domain (in the sense of
V') such that
e If o(a) = 0, then dom(f) = d and for ¢ € d, ”_Ponfl[G]*Pg

“f(0) <.
e Assume o(a) > 0. Then,
— Ais a d-tree with respects to Eq(d) (in the sense of V).
— dom(F) = d and for v € dom(F), F(v) = (P, ,,[G],¢) where
Fpyie) “v < By <aandge PBU/V[G]”.
— dom(f) =d, f=(f, | v € A(@)), and for all v, dom(f,) = d.
—fored, lFp T i) “f(¢) < a” and for v € A(w),

Fr ey, 0 “Tr(C) <o

Paiy [G]*Pﬁi—l/o‘i—l

* %

(G

n—1/0n—1

Back in V. If p € P, /8, then by density, the collection of py € Pg such that pg
decides n, ag, - ,ap_1, dom(fy), - ,dom(f,,—1), the common domain, A;, A, ¢
(as the equivalent PB’ /p-hame, and so on), is open dense. In this case, we say that
po interprets p. All in all, for such pg which interprets all the relevant components
of p, let p; be such the interpretation. Assume o(3) > 0 and o(«) > 0 (the other
cases are simpler) write py as ro" (g, d, B, H) and by the interpretation, we may
write

b1 = (<Pﬂ’/ﬁa q-/)/\(s()a <PBO/O¢0’ QO>) o A(Sn—lﬂ <PBH71/anilaqn—l>)A<f7 .}?a A7F>
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There is a natural concatenation pg with p;, written by po ™ p;1, which is
r=10"((9, 3. B H), Py @) " (s0e1s Py ysdne1) " (L FLAF).

Then r € P, with r [ Pg = pg exists. Denote r/Pg the term p;. For Pz-names
po and py in Pa/ﬁ, we say that pg < p; if there is p € GF# such that p interprets
po and py, and pTpy <o p_p1. Also define py <* p; if there is p € GF# such
that p interprets po and pi, and p~po <) p~pi1. One can check that the map
¢:{p € P,|p]| Psexists} - Ps Pa/ﬁ defined by ¢(p) = (p | Ps,p/Ps) is a
dense embedding, where p \ Ps is the obvious component of p which is in P, /8-
Note that if G is Pg-generic and H is P,[G]-generic, there is a generic I for P,
such that V|G x H| = V1], where I is generated by {p | p | Ps exists, p | Ps € G
and (p/Ps)|G] € H}. Conversely, if I is P,-generic and for some p € I, p | P3
exists, we can get G which is Pg-generic and H which is P, [G]-generic such that
V|G = H] = V[I], where G is generated by {p | P | p € I and p | P3 exists} and
H={(p/Ps)|G]) |pe€landp| Ps exists}.

In VP let C, /8 be a P, sp-name of the set described as the following. Let G
be Pg-generic. and H be generic over P, [G] = Pa/ﬁ [G]. Then let I = G = H be
P,-generic. I derives the set C, C o+ 1 and G derives the set Cg C 3+ 1. Let
Casp = Ca \ Cp.

The following proposition has a similar proof as some previous propositions, for
example, Proposition 6.7 and Proposition 6.16.

Proposition 7.14. o kg “(Pys, <) is at-c.c.”
o g ¢ .a/lg, <,<*) has the Prikry property.
o kg “(Pa/ﬂ,g*) is B*-closed”, where B* is the least inaccessible cardinal
greater than (3.

We conclude that from all the analysis, Proposition 4.1 holds for P, and all
relevant quotients at a.

8. THE MAIN FORCING

We are now defining our main forcing IP. The forcing P = Ui <|a is inaccessible} Pa-
For p and p/ in P, define p < p' if p € Py, p' € Py, a > o, p | P, exists, and
p | Py <4 p. The forcing is kT-c.c. Let G be P-generic. Then if p € G is such
that p | P, exists, then G | P, is P,-generic. We briefly describe P/P, for a < &
inaccessible. Recall that for a < n < &, IFq “{p/Pa | p € P,,p | P, exists} is
densely embedded in P,, /o For a < k inaccessible, let P/P, as the collection
{p/Ps | p € P,p | P, exists}. Define py < p; (in V=) if there is p € P, such that
P Po <pp D1

Remark 8.1. VP for every p € P/P,, there is  such that p € Pn/a.

This introduces the set C,. Let C = U,{Cy | G | P, is P,-generic}. Then
C C k is a club. The next theorem shows that the cardinal arithmetic should be
as expected.

Theorem 8.2. Let f be a P-name of a function from [ to ordinals such that 5 < k
and G is P-generic. Then f € V|G | P,] for some a < k.
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Proof. We show by a density argument. Let p € P and f be a P-name of functions
from S to ordinals, where § < k. For simplicity, assume p is an empty condition.
Let M < Hy for some sufficiently large regular 6, 8 C M, f,p,P € M, Vagnr € M,
and o(M Nk) > B (this is possible from Assumption 2.1, item (4)). Say o = M Nk.
We are going to build p* € P, of the form p* = (f, f, A F). Let f, f, and A be any
objects. Fix v < 8 and v € A(«) such that o(v) = «. Let Y, be a maximal antichain
of relevant collections in P,. For each r € Y, let GG,. be P,-generic containing 7.
Since V,, € M, M[G] Nk = M N k. Find ¢ € P/G such that ¢ decides f(7)[G]. By
elementarity, we may find such a ¢ in M[G]. Then ¢ € P¢/G for some { < a. Back
in M, let £ and ¢ be the names for such ¢ and ¢. Define Fv) = <Pg‘/uv g). For v
with o(v) > 3, we assign F(v) to be any value. This completes the construction of
F. By our design, we have that p* decides f, and hence, p* IFp f € Vb,

(Il

Corollary 8.3. Every cardinal is preserved in V.
Corollary 8.4. For 8 < k the value 2° is determined in VF= for some o € (B, k).
Corollary 8.5. « is inaccessible in VT.

Proof. By Theorem 8.2, if x is collapsed, then the witness function has to be in
VP for some a < k, but & is preserved in P,, a contradiction. The same argument
shows that & is regular. Finally, for every 3 < &, the value 27 must be determined
in VP« for some sufficiently large o because the forcing can be factored so that the
quotient forcing after the stage 3 is B7-closed under the direct extension, O

Theorem 8.6. In V', k is inaccessible, there is a club D C x such that for o € D,
2% =Tt and fora &€ D, 2% =a™.

Proof. Let C be the club derived from P and D = lim(C). Then D satisfies the
theorem. g

9. GETTING DIFFERENT CARDINAL BEHAVIORS ON STATIONARY CLASSES

Assume GCH. Let s be a strongly inaccessible cardinal. For each v < &, let
f~y 1 & = k. Assume that for each +, there is a coherent sequence of extenders E_'W,
on a set X, C k and o7 : X, — & such that
Ey = (Ey(o,8) | B < o7(a)).
each E(a,3) is an (o, atf(®)) extender witnesses a being at/(*)-strong.
o7(a) < a.
for v < k, {a | o7(a) > v} is stationary.

Then we can proceed a similar forcing construction, except that the corresponding
Cohen part at o will be C(at, /(). Let PU~17<#%) be the corresponded forcing.

Theorem 9.1. In the forcing P~17<5)  4ll the cardinals are preserved, the forcing
produces a club C' C Uy« X, such that for each 0 < < K regular and v < K, the
collection of a with cf(a) > € and 2% = at/(%) s stationary.

Proof Sketch. Fix € > 0 and a P-name of a club subset of x D. Let p be a condi-
tion, D a name of a club subset of k. Let M < Hy where 0 is sufficiently large,
D, p,PUsIA<r) ¢ M Visn,. € M, and oY(MnNk)>¢E Let = MnNk. We are now
extending p to a condition whose top level is . Let p = (f, f,A, F) € P,, where
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f, f» A can be any sensible components. For each v € A(«), let F(v) be a condition
that decides an element  which is the minimum of the interpretation of D\ (v+1).

By elementarity, f is decided to be below a. Then the final condition forces that «
is in C'N D, and forces that 2 = o/7(®) and cf(a) > €. O

Example 9.2. Start from GCH, & carrying a (r, £7%)-extender. Then it is possible
that for v < k, there is a sequence coherent sequence of extenders Ey on a stationary
set X., C k where each . (a, 3) witnesses a being at7-strong. Let f, be a constant
function with value . Then the forcing P{/~17<#) forces that & is inaccessible, and
in Vi, and each v < &, there is a stationary class S, C  such that for o € S,
2% = o7, Also, in this situation, for each v and &, the collection of « such that
o7(a) = £ is stationary. A similar proof as in Theorem 9.1 shows that in the final
model, for every v < k and £ < k regular, there is a stationary set of a such that
2% = o and cf(a) = €.
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